Setting mean airway pressure during high-frequency oscillatory ventilation according to the static pressure--volume curve in surfactant-deficient lung injury: a computed tomography study.

نویسندگان

  • Thomas Luecke
  • Juergen P Meinhardt
  • Peter Herrmann
  • Gerald Weisser
  • Paolo Pelosi
  • Michael Quintel
چکیده

BACKGROUND Numerous studies suggest setting positive end-expiratory pressure during conventional ventilation according to the static pressure-volume (P-V) curve, whereas data on how to adjust mean airway pressure (P(aw)) during high-frequency oscillatory ventilation (HFOV) are still scarce. The aims of the current study were to (1) examine the respiratory and hemodynamic effects of setting P(aw) during HFOV according to the static P-V curve, (2) assess the effect of increasing and decreasing P(aw) on slice volumes and aeration patterns at the lung apex and base using computed tomography, and (3) study the suitability of the P-V curve to set P(aw) by comparing computed tomography findings during HFOV with those obtained during recording of the static P-V curve at comparable pressures. METHODS Saline lung lavage was performed in seven adult pigs. P-V curves were obtained with computed tomography scanning at each volume step at the lung apex and base. The lower inflection point (Pflex) was determined, and HFOV was started with P(aw) set at Pflex. The pigs were provided five 1-h cycles of HFOV. P(aw), first set at Pflex, was increased to 1.5 times Pflex (termed 1.5 Pflex(inc)) and 2 Pflex and decreased thereafter to 1.5 times Pflex and Pflex (termed 1.5 Pflex(dec) and Pflex(dec)). Hourly measurements of respiratory and hemodynamic variables as well as computed tomography scans at the apex and base were made. RESULTS High-frequency oscillatory ventilation at a P(aw) of 1.5 Pflex(inc) reestablished preinjury arterial oxygen tension values. Further increase in P(aw) did not change oxygenation, but it decreased oxygen delivery as a result of decreased cardiac output. No differences in respiratory or hemodynamic variables were observed when comparing HFOV at corresponding P(aw) during increasing and decreasing P(aw). Variation in total slice lung volume (TLVs) was far less than expected from the static P-V curve. Overdistended lung volume was constant and less than 3% of TLVs. TLVs values during HFOV at Pflex, 1.5 Pflex(inc), and 2 Pflex were significantly greater than TLVs values at corresponding tracheal pressures on the inflation limb of the static P-V curve and located near the deflation limb. In contrast, TLVs values during HFOV at decreasing P(aw) (i.e., 1.5 Pflex(dec) and Pflex(dec)) were not significantly greater than corresponding TLV on the deflation limb of the static P-V curves. The marked hysteresis observed during static P-V curve recordings was absent during HFOV. CONCLUSIONS High-frequency oscillatory ventilation using P(aw) set according to a static P-V curve results in effective lung recruitment, and slice lung volumes during HFOV are equal to those from the deflation limb of the static P-V curve at equivalent pressures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific compliance and gas exchange during high-frequency oscillatory ventilation.

OBJECTIVES To evaluate the use of specific compliance (static compliance/functional residual capacity) to adjust mean airway pressure, resulting in optimal gas exchange during high-frequency oscillatory ventilation in a surfactant-deficient newborn piglet. DESIGN Prospective controlled animal study. SETTING Laboratory. SUBJECTS Eight newborn piglets at 5 days of age. BACKGROUND High-fre...

متن کامل

Continuous noninvasive monitoring of lung recruitment during high-frequency oscillatory ventilation by electrical impedance measurement: an animal study.

BACKGROUND Ventilatory pressures should target the range between the upper and lower inflection point of the pressure volume curve in order to avoid atelecto- and volutrauma. During high-frequency oscillatory ventilation (HFOV), this range is difficult to determine. Quadrant impedance measurement (QIM) has recently been shown to allow accurate and precise measurement of lung volume changes duri...

متن کامل

Acoustic Parameters for Optimizing Lung Volume During High- Frequency Oscillatory Ventilation in Infants with Respiratory Distress Syndrome: A Feasibility Study

During high-frequency oscillatory ventilation (HFOV), the primary variable affecting lung volume is the mean airway pressure (MAP). To effectively maintain lung recruitment and optimal gas exchange without overstretching (or collapsing) the lung, MAP should be set between the lower and upper inflection points of the pressure-volume curve of the lung. At present, there is no efficacious means th...

متن کامل

The deflation limb of the pressure-volume relationship in infants during high-frequency ventilation.

RATIONALE The importance of applying high-frequency oscillatory ventilation with a high lung volume strategy in infants is well established. Currently, a lack of reliable methods for assessing lung volume limits clinicians' ability to achieve the optimum volume range. OBJECTIVES To map the pressure-volume relationship of the lung during high-frequency oscillatory ventilation in infants, to de...

متن کامل

High-frequency oscillatory ventilation for adult respiratory distress syndrome--a pilot study.

OBJECTIVE To evaluate the safety and effectiveness of high-frequency oscillatory ventilation using a protocol designed to recruit and maintain optimal lung volume in patients with severe adult respiratory distress syndrome (ARDS). SETTING Surgical and medical intensive care units in a tertiary care, military teaching hospital. DESIGN A prospective, clinical study. PATIENTS Seventeen patie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesiology

دوره 99 6  شماره 

صفحات  -

تاریخ انتشار 2003